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a b s t r a c t

Juxtaposition-based domain decomposition requires complicated pre-processing and communications of
pre-consolidated data, and is restricted to field problems. In this paper, we propose a superposition-based
domain decomposition parallelization, which employs element-by-element construction, processor-level
assembling, and condensed random data structure. Superposition-based parallelization shows great flex-
ibility in partitioning the computational domains, communicates more consolidated data, and can be
applied beyond field problems. Moreover, superposition-based parallelization can, as an option, follow
the same numerical process as its serial counterpart to produce digit-by-digit identically the same result,
which makes code development and debugging much easier. Solving large scale indefinite systems con-
tinues to pose as a challenging issue for incompressible flows. In this paper, we propose the discrete oper-
ator splitting (DOS) technique to break the original ill-natured large indefinite system into two smaller
well-natured definite systems coupled through source terms. The underpinning idea of the technique
is to seamlessly combine the splitting and iterations together. Equipped with the parallelization and
DOS, we present in details the superposition-based parallel discrete operator splitting finite element
method and apply it to incompressible Navier–Stokes flows. Backward-facing step flow, cavity flow,
and pipe flow are simulated to demonstrate the success of the method.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The past two decades witnessed a monotonic growth in high
performance computing on distributed computers for tackling
large scale problems such as those arising from fluid flows. Domain
decomposition [9,16,28,26,34,24,23,25,35,3] stands out as the pri-
mary parallelization method for solving a field problem. In a typi-
cal domain decomposition, the overall domain is decomposed into
several subdomains consisted of many elements, as shown in
Fig. 1(a). Computation of each subdomain is typically conducted
on each processor, and the inter-subdomain information is com-
municated among processors. In Fig. 1(a), the numbering of ele-
ments are relative to local processor, as indicated by the
superscripts of e0;1 for example. Alternatively, the whole domain
is discretized into elements, then these elements are grouped into
different subdomains. In this way, elements are naturally num-
bered in a global sense. In present paper, this approach (with its
two variants) is called juxtaposition-based parallelization (or domain
decomposition as commonly called in scientific computing), simply
because the overall domain is a juxtaposition of all subdomains.
Exactly due to the same nature, juxtaposition-based domain
ll rights reserved.
decomposition is restricted to field problems, where an actual
physical domain must be clearly identified. Also, the method in-
volves complicated pre-processing for the processing-stage data
communications. For simulation of moving boundary problems,
these pre-processing level communications need to be moved into
time marching loop, and this makes computer programming more
error-prone. Moreover, it is very common for the juxtaposition-
based domain-decomposition to communicate excessive number
of quantities (in continuous sense). A good example is the Poisson
solver illustrated in [16], where a significant drop in parallel scale
up is demonstrated as the number of processors increases. In jux-
taposition-based domain decomposition, data to be communicated
is determined in the early stage of system formation. If this is
determined in the system solving stage, the number of messages
can be considerably reduced. Finally, the domain decomposition
parallelization does not follow the same numeric process of its cor-
responding serial algorithm. In the serial case, the whole domain is
handled by a single processor. In the parallel case, each processor
handles a subdomain and all other processors act like boundary
conditions providers. The parallel one follows a different numerical
process from the serial one. Therefore, although the parallel algo-
rithm can be trivially reduced to its serial counterpart, their results
slightly differ from each other. In other words, domain decomposi-
tion is not just a matter of logistics, and this makes code debugging
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Fig. 1. (a) Juxtaposition-based domain decomposition, where each subdomain is typically computed by one processor. As an example, the second superscript of e4;0 is used to
index the processor while the first superscript is the processor-level local index. (b) Geometric representation of superposition-based partition with global numbering of
elements. As an example, the second superscript of e8ð1Þ is used to index the processor while the first superscript is the global index.
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more difficult. Debugging a parallel code is more effective if its
serial counterpart should produce identically the same result.

In the superposition-based parallelization, no domain decom-
position is needed. Instead, the overall domain is directly discret-
ized into elements and each processor handles a subset of all
elements, grouped by numbering of elements as an example. Each
processor stores local matrices, local vectors (hereafter ‘vectors’
excludes ‘solution vectors’), and global solution vectors. The major-
ity of expensive operations, including matrix–vector-product, are
then parallelized based on their additive property, and results of
operations by individual processors are communicated. The ele-
ments operated by a particular processor may scatter in the phys-
ical space, a great flexibility over domain decomposition. Fig. 1(b)
shows two shaded elements belonging to the same processor. It
should be pointed out that the figure is merely for illustration pur-
pose and not needed in actual parallel implementation. Superposi-
tion-based parallelization is relatively simple and can be applied
beyond field problems. In addition, numerically it can be chosen
to follow its corresponding serial algorithm exactly and a parallel
code can produce digit-by-digit identically the same values as its
serial counterpart, which makes coding and debugging of parallel
algorithms very easy. For this reason, a more specific name for
the current parallelization is superposition-based non-numeric par-
allelization. Note that in juxtaposition-based domain decomposi-
tion, a parallel code running on several processors will not
produce digit-by-digit the same result as its serial counterpart.
More explanation on this ‘‘digit-by-digit” matter can be found in
Section 6.3. Although the system formation is completely in a local
sense in superposition-based parallelization, the overall structure
of system solving is in a global sense and solution vectors are up-
dated globally (that is, all processors update the same global solu-
tion vectors). It has to be pointed out that under many situations
the global-sense structure does not hamper efficiency of the algo-
rithm because the expensive calculations of vectors, which are
used to update solution vectors, are conducted locally by individ-
ual processors and communicated among them. To make commu-
nications more efficient, all data is compressed and stored
randomly so that only condensed local vectors are communicated
among processors. In short, the superposition-based parallelization
achieves both the simplicity and the reasonable efficiency for a
broad class of problems. Furthermore, the technique can be applied
to non-field problems and is easy to debug.

In vector form, the non-dimensional governing equations for
incompressible flows read



Fig. 2. (a) Relations between cylindrical and Cartesian coordinates, (b) generic
coordinates.
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r �~u ¼ 0; ð1aÞ
@~u
@t
þ~u � r~u ¼ �rpþ 1

Re
½r � r~uþrðr �~uÞ� þ~f ; ð1bÞ

where~u and p stand for velocity and pressure, respectively,~f stands
for body force, and Re stands for Reynolds number. For decades, a
numerical simulation of this incompressible flow system has re-
mained as one of the most intriguing topics in computational fluid
dynamics. The pressure is neither fully decoupled from the velocity
nor fully engaged in the system. And due to the lack of a time deriv-
ative, the pressure is not an evolutionary quantity. However, the ac-
tual challenge is revealed only when one attempts to solve the
system employing the mixed formulation used for compressible
flows, where all unknown variables are solved simultaneously.
The indefinite system due to the mixed formulation, in which veloc-
ities and pressure are solved simultaneously without any manipula-
tions, is ill-conditioned [7]. In such a system, a relatively small
change in some entry of the matrix results in a relatively large
change in the solution. Hence, accumulated computer round-off er-
rors or some inherent perturbations of iterative processes make the
convergence very hard to achieve. When the size of the system in-
creases or when the physical solutions tend to be more rugged as a
consequence of higher Reynolds numbers or discontinuities, the
conditioning of the discrete system will further deteriorate and con-
sequently the convergence will become even more difficult. In some
situations, eventually the discrete system becomes singular and no
solution can be found.

Splitting methods exploit the weak coupling between the pres-
sure and the velocity. Splitting methods can be divided into three
categories, continuous splitting, semi-discrete splitting, and dis-
crete splitting. Both continuous splitting and the semi-discrete
splitting require numerical boundary condition (which is in contrast
to physical boundary condition) for the pressure, and the semi-dis-
crete splitting require additional boundary condition for some
intermediate variable. Discrete splitting often does not require
numerical boundary condition for the pressure [36]. The first two
papers on the subject introduced Harlow and Welch’s marker-
and-cell (MAC) method [18] and Chorin’s projection method [4].
MAC takes the discrete approach while the projection method fol-
lows the semi-discrete path, and both require some numerical
boundary condition for the pressure. An example of continuous
splitting can be found in [15].

The issue of the boundary conditions for the Poisson equation,
as well as boundary conditions for intermediate velocities (when-
ever introduced), has in the past sparked a considerable debate
[18,4,5,27,30,6,22,33,15,1,13,14,20,8,29,32,31,2,17] (in chronic or-
der). As a matter of fact, the numerical boundary condition for
the pressure Poisson equation is already implied in the system
and is actually not required in practice, as shown in the pres-
sure-correction type of approximate factorization technique by
Dukowicz and Dvinsky [8] and in the pressure-update type of
approximate factorization technique by Perot [29]. However, our
experience shows that only appropriate elements (or spatial
scheme) can faithfully reflect the inherent pressure boundary con-
dition. In semi-discrete splitting and continuous splitting, extra
boundary conditions for pressure are introduced, but they must
be consistent with the inherent boundary conditions. In this paper,
we take the discrete splitting approach which necessarily and suf-
ficiently converts the original large indefinite system with mixed
formulation into smaller subsystems. Thus, whether or not there
is a need to resort to numerical boundary conditions is up to the
original mixed formulation.

The elusive issue of splitting error has also drawn substantial
attention, in that many of those papers on the issue of numerical
boundary conditions also concern the issue of time accuracy.
Approximate factorization techniques remove the splitting error
through an approximate inversion of some matrix. Quarteroni
et al. [31] presented a framework for splitting methods and
approximate factorization techniques, including Perot’s approach.
The factorization technique [36] takes a different path in terms
of restoring time accuracy. However, the discrete operator splitting
technique to be introduced in this paper is free from the worry of
any splitting errors.

The remainder of this paper is organized as follows: generic dif-
ferential equations and their weak forms of integral equations are
derived in Section 2. In Section 3, the superposition-based parallel-
ization, one of two key contributions of this paper, is elucidated. In
Section 4, the discrete operator splitting, the other key contribu-
tion of this paper, is derived rigorously. In Section 5 the above
two techniques are combined and a procedure for the system solv-
ing is stipulated. Numerical examples are given in Section 6. Final-
ly, some conclusions are drawn in Section 7.

2. System formulation

We would like to obtain integral governing equations in weak
form for both Cartesian and axisymmetric cylindrical coordinates.
The generic coordinates are introduced for this purpose and its ori-
entation is shown in Fig. 2. The generic differential governing equa-
tions are
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where ca ¼ 0 for Cartesian coordinates and ca ¼ 1 for axisymmetric
coordinates. In this section the governing equations are trans-
formed into the format for numerical discretization. The variational
form for Eqs. (2a) and (2b) reads
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where dX ¼ dx1 dx2 for 2D and axisymmetric cases, and dX ¼
dx1 dx2 dx3 for 3D cases. For convenience of boundary condition
imposition and reduction of derivatives, integration by parts for
two terms are carried out,Z
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After consolidation of axisymmetric diffusion terms, the variational
weight-function form of integral equations reduces to
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where Ti stands for the surface traction. Let all quantities be ex-
pressed in terms of interpolation functions
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which is the semi-continuous (continuous in time and discrete in
space) weak form of the governing equations. The term semi-dis-
crete is reserved for equations discrete in time and continuous in
space. Note that Eq. (4) is in strong form if all admissible weight
functions are exhausted, but in weak form if weight functions are
the subset of admissible functions. We should emphasize that the
integral form and the integration by part are not approximate
operations and are not the reasons for the terminology the weak
form. Also in Eq. (4), the trial functions for pressure wp and for veloc-
ity w may be any suitable interpolation functions, such as spectral
functions and Lagrangian polynomials. In other words, Eq. (4) is
not restricted to finite element methods.

With second-order semi-implicit time scheme, Eq. (4) is discret-
ized further to
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where superscripts ðnÞ; ðnþ 1
2Þ, and ðnþ 1Þ are used to indicate time

levels. The variational nature in Eq. (5) demands the coefficients of
each weight function vanish so that a series of discrete equations
can be generated.

Eq. (5) applies to general interpolation polynomials for the pres-
sure (and the velocity). Next, the pressure is restricted to discon-
tinuous constant distribution. Due to the discontinuous constant
distribution, the pressure and its corresponding weight function
can be pulled out of the integrals, which can be simplified toZ
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Finally, the fully discrete system for the generic semi-discontinuous
weak form becomes
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Eq. (6) involves several domain integrals and one boundary
integral. These integrals are intended on the whole computational
domain in the physical space, as indicated by X and C. However,
due to the additive property of integration, the integral on the
overall domain is the sum of integrals on all individual elements.
Also, trial functions and test functions, which are defined on the
whole space and identified by nodes, are selected such that any
function completely vanishes on an element where the corre-
sponding node is not presented. As a consequence, the integration
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becomes localized. Furthermore, the integration on an element in
the physical space can be mapped into the integration on the mas-
ter element in the transform space.

3. Superposition-based parallelization

3.1. Element-by-element construction

In a traditional implementation, the element level matrices and
vectors are calculated first, without application of boundary condi-
tions, then assembled to form global matrices and vectors. Next,
boundary conditions are applied to global matrices and vectors
which are directly used to solve discrete unknowns. This approach
is inconvenient for parallel computation. In element-by-element
(EBE) approach, element level matrices and vectors are calculated
and imposed by boundary conditions, and the resulting system is
directly solved with element level matrices and vectors, through
the inter-element iteration. The global matrices and vectors are
never formed, resulting in a significant reduction of memory stor-
age. Compared with the traditional approach, EBE requires almost
negligible memory. However, in most scientific computing, the
constraint is the speed rather than the memory. EBE leaves the
memory capacity of a computer untapped but greatly sacrifices
the speed. In every linear iteration of EBE the system must be
Fig. 3. An illustration of partition and superposition on th
re-formed; in contrast, the traditional approach requires system
re-formation only for nonlinear iteration. It can be easily noticed
that a system formation in finite element method roughly costs
two dozens times as one sweep of linear iteration. Hence, for a
transient problem the EBE approach is about two dozens times
as slow as the traditional approach.

To overcome the drawbacks of both approaches, we first follow
the EBE approach, that is, boundary conditions are applied to the
element matrices and element vectors. Then, contrary to EBE, ele-
ment matrices and vectors are assembled to form processor-level
local matrices and vectors (corresponding to global matrices and
vectors in the serial counterpart), which will be used in system
solving. This is called element-by-element construction. Natural
boundary conditions are automatically imposed on matrices and
vectors by being incorporated into the formulation, hence, they
never cause problems in this approach. What should be concerned
are the essential boundary conditions (EBC).

A common practice for applying EBC on a specific discrete un-
known is to set the diagonal entry to unity and set all off-diagonal
entries to zero for the row indexed by this discrete unknown. Then
the corresponding entry on the right-hand-side vector is set equal
to the value as specified by EBC. It is important that this practice of
applying EBC can actually swap the order with the assembling.
Suppose a discrete unknown, imposed by an EBC, appears in two
ree processors. The sign ‘‘+” stands for superposition.
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different elements. After the common practice of EBC application
(just described) on both elements and superposition of the result-
ing element matrices and vectors onto the global ones, the global
matrix has 2 in the diagonal entry and zeros in all off-diagonal en-
tries, and the corresponding entry on right-hand-side has twice of
the value specified by EBC. Therefore, the EBE construction does
not cause any problem for EBC.

3.2. Grouping and superposition

In this subsection, we illustrate through an example how to par-
tition the domain and what the superposition means. The original
full domain shown in Fig. 1(b) is first discretized into many ele-
ments as the usual, and for each element an element matrix is con-
structed, shown in Fig. 3 in the first column. Then an arbitrary
method of grouping, such as according to numbering of all these
elements, is adopted to allocate elements to processors. The second
superscript of e8ð1Þ, for instance, indicates that this element belongs
to processor 1 (the second processor). Each element matrix has a
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Fig. 4. Condensed random data structure on a specific processor. The stretched processo
converted into each other.
stretched version as shown in Fig. 3 in the second column. As usual,
numbering inside element matrices follows element-level nodes
and numbering inside stretched element matrices follows global
nodes. The stretched ones, all in global sense, are actually never
stored and are for illustration only. As shown in Fig. 3 in the third
column, these stretched element matrices are assembled into
stretched process-level local matrices, which again are never
stored and are for illustration only. For example, element matrices
e8ð1Þ and e9ð1Þ belong to processor 1 and are assembled to obtain a
processor-level local matrix. Quantity e8ð1Þ

1;1 and quantity e9ð1Þ
0;0 are

superposed onto the same entry in the stretched local matrix.

3.3. Condensed random data structure

As shown in the previous subsection, element matrices and
stretched element matrices can be converted into each other
one-to-one, and the latter are assembled to obtain stretched
processor-level local matrices. All stretched matrices are large
and sparse, and should be avoided. This subsection illustrates
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r-level local matrix and the condensed processor-level local matrix can be mutually
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how to convert stretched process-level local matrix into condensed
processor-level local matrix, again one-to-one. In the serial coun-
terpart, the assembled (global) matrix is sparse on each row, but
does not contain any row which is totally blank. Illustrated in
Fig. 3, in the parallel version, all stretched process-level local
matrices are not only sparse on each row but also contain many
blank rows. Thus, the stretched local matrices can be compressed
in both column-wise (horizontal) and row-wise (vertical) direc-
tions. The actual bulk of data is stored in condensed processor-le-
vel local matrices (shown in Fig. 4), whose numbers of rows and
columns are pre-estimated. Using chain or cross chain data struc-
tures, the lengths of condensed local matrices can be more flexible
and data storage can be reduced to some extent, however, data ac-
cess speed will be significantly slowed down. Now, we illustrate
through the same example how the data is actually stored.

As shown in Fig. 3, processor 1 processes element 8 and obtains
two quantities, e8ð1Þ

0;0 and e8ð1Þ
1;1 . As shown in Fig. 4, quantity e8ð1Þ

0;0 (sup-
posedly positioned at the fifth row and fifth column in stretched lo-
cal matrix) is actually filled into the first row and first column of
condensed process-level local matrix. Accordingly, the row num-
ber (4) and column number (again 4) of e8ð1Þ

0;0 in stretched local ma-
trix are recorded in ‘‘row number map from condensed to
stretched” and ‘‘column position matrix”, respectively; row num-
ber of e8ð1Þ

0;0 in condensed local matrix is recorded in ‘‘row number
map from stretched to condensed”; and both row counter and
the column counter increase by 1. Quantities e8ð1Þ

1;1 is filled into
the second row and first column of the condensed local matrix.
Accordingly, its positions in both matrices must be recorded mutu-
ally and counters must be updated. Other quantities can be placed
in the condensed local matrix similarly.

In terms of row numbers, in the stretched local matrix e8ð1Þ
1;1 is

ahead of e8ð1Þ
0;0 , while in the condensed local matrix e8ð1Þ

1;1 is behind
e8ð1Þ

0;0 . In the stretched case, the row number is determined by global
numbering, while in the condensed case it is determined by the or-
der being processed. Hence, the data structure for the condensed
local matrix is random. However, the randomness should be lim-
ited to matrix construction stage only, and later access to the con-
densed local matrix must be deterministic. The ‘‘row number map
from stretched to condensed” serves for this purpose. In Fig. 4 any
‘‘counter” must be initialized to zero and ‘‘row number map from
stretched to condensed” must be initialized to some number such
as �1 for a proper tracking of data. Now we can replace expensive
stretched local matrix by condensed local matrix because of their
one-to-one mutual conversion.

To this point, element matrices belonging to a specific processor
can be assembled to obtain condensed processor-level local matri-
ces. Further details of the superposition-based parallelization have
to be postponed to the system solving section, which is after the
next section.

4. Discrete operator splitting

4.1. Forward derivation

Discretization of Eqs. (2a) and (2b) or Eq. (6) eventually pro-
duces the following discrete system

Auþ Gp ¼ Su; ð7aÞ
Du ¼ Sp; ð7bÞ
where A in the momentum equation is the coefficient matrix for the
velocity, G is the coefficient matrix for the pressure, D in the continu-
ity equation is the coefficient matrix for the velocity, and Su and Sp are
the right-hand-side known vectors for the momentum and the conti-
nuity equations, respectively. The momentum Eq. (7a), involved by
both u and p, reflects the relation between the velocity and the pres-
sure, while the continuity Eq. (7b), involved by u only, imposes a con-
straint on the velocity. It is well known that such a system is ill-
conditioned, which makes it difficult to iteratively solve the whole
large system simultaneously. Alternatively, we may consider to iter-
ate between the two equations back and forth (and each equation can
be temporarily solved directly or iteratively). This is named source-
term iteration (or subsystem iteration). However, the primitive cou-
pled system, Eqs. (7a) and (7b), is not fit for source-term iteration. In-
stead, we need an equation involved by both the velocity and the
pressure and with invertible coefficient matrix for the velocity, which
is exactly the primitive momentum Eq. (7a). And we need an equation
involved by both the velocity and the pressure and with invertible
coefficient matrix for the pressure, which is still absent. Hence, we
would like to replace the continuity equation by a combination of
the momentum equation and the continuity equation. In momentum
Eq. (7a), we split matrix A into the diagonal part Ad and the off-diag-
onal part ðA� AdÞ, consequently

ðA� Ad þ AdÞuþ Gp ¼ Su

() Aduþ Gp ¼ Su � ðA� AdÞu
() uþ A�dGp ¼ A�d½Su � ðA� AdÞu�
) Duþ DA�dGp ¼ DA�d½Su � ðA� AdÞu�; ð8Þ

where A�d stands for the inverse of Ad. Let the continuity Eq. (7b) be
incorporated into the above momentum equation and let the origi-
nal momentum Eq. (7a) retained, we obtain the following system

DA�dGp ¼ �Sp þ DA�d½Su � ðA� AdÞu�;
Au ¼ Su � Gp:

For convenience, we introduce

D� � DA�d
;

so that the discrete forms of the momentum equation and the con-
tinuity equation become

D�Gp ¼ �ðSp � D�SuÞ � D�ðAu� AduÞ;
Au ¼ Su � Gp:

Define

L � D�G;

S�p � Sp � D�Su;

finally we have two well-posed subsystems

Lp ¼ �S�p � D�ðAu� AduÞ � bpðuÞ; ð9aÞ
Au ¼ Su � Gp � buðpÞ: ð9bÞ
4.2. Backward derivation

So far we have proved that the original indefinite system (Eqs.
(7a) and (7b)) implies the two definite subsystems (Eqs. (9a) and
(9b)). This is not adequate yet. We must show these two systems
are equivalent to each other. All moves in the above forward deri-
vation actually can be reversed directly, except the move to deduce
Eq. (8). Hence, we would like to take a slightly different path to
prove the reverse, that the two definite subsystems (Eqs. (9a)
and (9b)) also implies the original indefinite system (Eqs. (7a)
and (7b)).

Eq. (9b) directly recovers momentum Eq. (7a). With incorpora-
tions of definitions of D�; L, and S�p, Eq. (9a) can be recast as

DA�dGp¼�SpþDA�dSu�DA�dðAu�AduÞ¼�SpþDuþDA�dðSu�AuÞ:

With Eq. (9b) taken into account, the above equation reduces to
continuity Eq. (7b). Therefore, Eqs. (9a) and (9b) are necessary and
sufficient conditions of Eqs. (7a) and (7b).
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4.3. Discussions

Now the original single ill-conditioned large system (Eqs. (7a)
and (7b)) is replaced by two smaller well-conditioned subsystems
(Eqs. (9a) and (9b)). With predicted source terms, Eqs. (9a) and (9b)
can be iterated alternatingly. Within each source-term iteration, an
iterative technique can be used to solve two linear subsystems. The
overall technique introduced in this paper to tackle indefinite sys-
tems is named discrete operator splitting (DOS).

The idea behind the present method is to combine the effort of
decoupling of the pressure from the velocity with the iterative
process of solving a linear system (which in fact is also a decou-
pling process). The key move is to split matrices into diagonal and
off-diagonal parts. The technique neither introduces intermediate
velocity, nor requires additional numerical boundary conditions
for the pressure, and nor incurs any splitting errors. Although
the idea of discrete splitting has been decades old, the DOS is pre-
sented here for the first time. It differs from the algorithm intro-
duced in MAC method [18] and algorithms used in some
commercial software, which all require numerical boundary con-
ditions. It differs from the segregated technique [19], where the
key step of the present method was never introduced. It differs
from factorization techniques (such as [29]), in which the pres-
sure and the velocity are completely decoupled. The process of
system solving is the process of decoupling of all discrete un-
knowns. However, in general we should not be so lucky to decou-
ple a group of discrete unknowns (such as those for the pressure)
from the remaining discrete unknowns (such as those for the
velocity). The pressure and the velocity in continuous splitting,
semi-discrete splitting, and a part of discrete splitting are coupled
through boundary conditions. In segregated methods and DOS,
they are coupled through source terms. Note that in continuous
splitting the pressure and the velocity also initially appear to be
coupled through source terms. However, after incompressibility
imposed, the source terms only involve quantities in previous
time steps. The derivation of DOS includes both a forward deriva-
tion and a backward derivation, so that the original ill-condi-
tioned system is converted into a well-conditioned system
sufficiently and necessarily. It should also be mentioned that
the DOS technique can be applied to various meshes or methods,
such as a high-order implicit-in-space compact finite difference
method [38] and a fully conservative finite volume method on
lattice grid [37].
5. System solving

5.1. Source-term iteration and linear iteration

We assign superscripts ðnÞ; ðlÞ, and ðkÞ to identify time level,
source-term iteration, and linear iteration, respectively. Super-
script ðmÞ is reserved for nonlinear iteration, but it has been cir-
cumvented in this paper because of the semi-implicit time
scheme. We assign indices to Eqs. (9a) and (9b) to obtain

Lpðnþ1;lþ1Þ ¼ bpðu��Þ; ð10aÞ
Auðnþ1;lþ1Þ ¼ buðp��Þ; ð10bÞ

where predicted solutions for source-term iterations are defined as

u�� � buðnþ1;lÞ þ ð1� bÞuðnþ1;l�1Þ;

p�� � bpðnþ1;lþ1Þ þ ð1� bÞpðnþ1;lÞ:

In the above definitions the optimal value for b varies from case to
case but convergence is always achieved if b ¼ 1:0.

Using the vector-by-vector Jacobi iteration, the p-subsystem
(10a) and the u-subsystem (10b) turn out to be
pðnþ1;lþ1;kþ1Þ ¼ p� þxL�d½bpðu��Þ � Lp��; ð11Þ
uðnþ1;lþ1;kþ1Þ ¼ u� þxA�d½buðp��Þ � Au��; ð12Þ

where predicted solutions for linear iterations are defined as
p� � apðnþ1;lþ1;kÞ þ ð1� aÞpðnþ1;lþ1;k�1Þ;

u� � auðnþ1;lþ1;kÞ þ ð1� aÞuðnþ1;lþ1;k�1Þ:

In the above definitions a P 1:0, typically a ¼ 1:6. In Eqs. (11) and
(12), 0 < x < 1:0, and typically x ¼ 0:3. Eqs. (11) and (12) are the
primary equations used to update the pressure and the velocity.
5.2. Key steps of the algorithm for system solving

Although the system formation is completely in a local sense in
superposition-based non-numeric parallelization, the overall struc-
ture of system solving is in a global sense and solution vectors are up-
dated globally (that is, all processors update the same global solution
vectors). It has to be pointed out that under many situations the glo-
bal-sense structure does not hamper efficiency of the algorithm be-
cause the expensive calculations of vectors, which are used to update
solution vectors, are conducted locally by individual processors and
communicated among them. To make communications more effi-
cient, all data is compressed and stored randomly so that only con-
densed local vectors are communicated among processors. In
short, the superposition-based parallelization achieves both the
simplicity and the reasonable efficiency for a broad class of prob-
lems. Furthermore, the technique can be applied to non-field prob-
lems and is easy to debug.

So far the algorithm for system solving has been presented in a
narrative way, not organized and tailored for computer program-
ming. To make the actual implementation easier, we summarize
the key steps of the algorithm. Some standard operations such as
recording of solution vectors are not included. As throughout this
paper, ‘‘local” in the following indicates the processor level (not
the element level) and ‘‘condensed” refers to a randomly com-
pressed data structure. Again, we emphasize that any ‘‘solution
vector” is stored globally and does not take part in communica-
tions; typically a ‘‘matrix” is stored locally and condensed; and typ-
ically a ‘‘vector”, which excludes ‘‘solution vector”, is stored locally
and condensed. Apart from global solution vectors, there are sev-
eral global vectors for intermediate storage. Inside the time march-
ing process, these ordered steps are as follows:

� Calculate coefficient matrices bA; bG, and bD, and right-hand-side
vectors bSu and bSp, all in condensed local sense (here, the hat
indicates that the matrix is condensed and local).

� Find condensed local diagonal matrix bAd, the diagonal part of
condensed local matrix bA; communicate all bAd to obtain global
diagonal matrix Ad.

� Calculate condensed local matrix bD� ¼ bDA�d, where bD is a con-
densed local divergence matrix and A�d is the inverse of global
diagonal matrix Ad.

� Calculate condensed local Laplace matrix bL ¼ bD�G, where bD� is a
condensed local matrix and G is a global matrix. This involves
communication of condensed local gradient matrix bG to obtain
G, however, G is never stored.

� Find condensed local diagonal matrix bLd, the diagonal part of
condensed local matrix bL; communicate all bLd to obtain global
diagonal matrix Ld.

� Communicate all condensed local vector bSu to obtain global vec-
tor Su.

� Calculate condensed local vector bS�p ¼ bSp � bD�Su, the solution-
independent part of the source term of the p-subsystem (this
begins the source term iteration).
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� Calculate intermediate condensed local vector bSq ¼ bAu�� � bAdu��,
where the predicted solution u�� for source-term iteration is glo-
bal; communicate all bSq to obtain intermediate global vector Sq.

� Calculate the source term, condensed local vector
b̂p ¼ �bS�p � bD�Sq, for the p-subsystem (this begins the p-subsys-
tem linear iteration).

� Calculate intermediate condensed local vector Dp̂ ¼ xL�d

ðb̂p � bLp�Þ, where predicted solution p� for linear iteration is glo-
bal; communicate all Dp̂ to obtain intermediate global vector Dp.

� Update global solution vector p ¼ p� þ Dp (make a decision to
end the p-subsystem linear iteration, for instance, by the num-
ber of iterations).

� Calculate the source term, condensed local vector b̂u ¼ bSu �bGp��,
where predicted solution p�� for source-term iteration is global
(this begins the u-subsystem linear iteration).

� Calculate intermediate condensed local vector Dû ¼ xA�d

ðb̂u � bAu�Þ, where the predicted solution u� for linear iteration
is global; communicate all Dû to obtain intermediate global vec-
tor Du.

� Update global solution vector u ¼ u� þ Du (make a decision to
end the u-subsystem linear iteration, for instance, by the num-
ber of iterations. Finally, make a decision to end the source-term
iteration, for instance, by the relative changes of solutions u and
p over their previous values, both as the consequence of the
source-term iteration).

In the above algorithm, we have three inevitable communica-
tions of condensed local vectors and one communication of con-
densed local matrix G (which can be avoided in both semi-
discrete splitting and continuous splitting methods) outside the
source-term iteration. There is one communication inside the
source-term iteration but outside both linear iterations. And there
is one communication for each linear iteration. In a time depen-
dent problem, the number of source-term iterations is large.
Hence, the number of communications of condensed local vectors
inside the source-term iteration determines the efficiency of the
parallel algorithm. For a steady problem solved by a time marching
process on a fixed mesh, quantities bA; bG; bD; bAd;Ad

; bD�; bL, L̂d, and L̂ in
the above algorithm are invariant. Therefore, several relevant steps
right after formation of the system and before iteration of the sys-
tem solving can be avoided.

6. Numerical results

To demonstrate the success of the method we select the back-
ward-facing step flow, lid-driven cavity flow, and axisymmetric pipe
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Fig. 5. Configuration for the backstep flow. Both velocity components vanish on top a
vanished as implied in free traction boundary condition (if used) at exit.
flow as benchmark numerical examples. All these three laminar and
steady flows are solved by a time marching process. Constant time
steps vary from case to case, but are small enough to ensure stability
and time accuracy. A representative time step size is 0.001.

6.1. 2D backward-facing step flow

The backward-facing step flow is short-handed as the backstep
flow (Fig. 5), which serves as a popular benchmark problem. In this
flow, the geometry is simple enough so that various numerical
methods can be quickly coded and tested. The flow is rich in struc-
ture. At low Re, one eddy is formed in the corner between the step
and the bottom wall. As Re increases, the second eddy attaches the
top wall. When Re reaches some critical value, the flow becomes
unsteady and eddies are formed alternatingly near the bottom
and top walls, which is somewhat similar to the von Karman vor-
tex street. The reattachment length of the primary eddy is sensitive
to numerical methods. Numerical methods with artificial diffusion
or other smoothing techniques often find it hard to predict an
accurate reattachment length. The flow involves the issue of open
boundary conditions and the singularity around the step could cre-
ate some difficulties for numerical methods [11]. The location of
the exit must be far downstream to minimize the influence of exit
conditions on upstream flows, hence the flow is expensive to sim-
ulate. Because of all these reasons, the backstep flow is an ideal
benchmark problem to demonstrate the capability of DOS tech-
nique. The results shown in Fig. 6(a) and (b) are based on a
256� 16 mesh. Fig. 6(a) shows that the exit location set at
x ¼ 32:0 is sufficiently good, whereas at a location x ¼ 25:0 the
flow is not fully developed. Fig. 6(b) shows good agreement at
x ¼ 7:0 between the present result and that from [11].

6.2. 2D cavity flow

The lid-driven cavity flow is a well-known benchmark problem
with well documented numerical results. The configuration is
shown in Fig. 7. The sudden movement of the top lid introduces
a singularity, which makes the flow riveting. Some elements, such
as linear element fail to simulate this flow very well, unless some
artificial smoothing is used. The 4–1 element, linear polynomial for
velocity and constant (and discontinuous) for pressure, was tried
to solve the cavity flow. Unfortunately, except for very low Re
the velocity profiles show a lot of wiggles. The 8–1 element is im-
mune from this issue and can be used to solve this flow reliably.
Fig. 8 shows the comparison between the numerical result, which
is based on a mesh of 256� 256 elements, and that from [12].
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Fig. 7. Configuration of the cavity flow. The pressure is free from boundary
conditions.
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Fig. 8. Comparison between the present numerical result and the standard
reference result [12] for the horizontal velocity profile on the vertical mid plane
of the lid-driven cavity flow.
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Good agreement is observed. A mixed formulation, where velocity
and pressure are solved simultaneously, was attempted to solve
the cavity flow. When the mesh is really fine, even with 8–1 ele-
ment and with very low Re, the numerical results start to distort.
It is commonly believed by many that the finer meshes produce
the better results. However, this is true only for a well-conditioned
system. As the size of the system increases, the conditioning num-
ber, the ratio of the largest eigenvalue and the smallest eigenvalue,
continues to grow and the nature of the system continues to dete-
riorate. Therefore, the splitting technique such as the DOS pro-
posed in this paper is crucial to efficiently and reliably solve
incompressible flows.

6.3. Axisymmetric pipe flow

The configuration for the pipe flow is shown in Fig. 9, where the
radius of the pipe flow is set as unity. The pipe flow possesses sev-
eral features ideal for numerical demonstration. Both the geometry
and the flow are relatively simple and the exit velocity profile is
known exactly, so that it is suitable for numerical comparison.
The uniform flow at the entrance develops into a parallel flow at
the exit, hence the flow is axisymmetric three-dimensional and
ideal for testing the generic formulation. Further, the pipe flow in-
volves non-essential boundary conditions, along the symmetric
axis and at the open exit, and the open boundary conditions at
the exit. Various boundary conditions can be used for a specific
numerical method. As a standard practice, traction boundary con-
ditions are derived from velocity boundary conditions for the pres-
ent DOS FEM. However, velocity boundary conditions at the exit, as
commonly adopted in finite volume and finite difference methods,
are also implemented with DOS FEM. This is fulfilled by avoiding
integration by part for the diffusion term. Unfortunately this ap-
proach does not show any advantage over the standard one, except
for some cases with the non-free traction exit boundary condition.
For example, if the flow is exerted by a conservative body force
which will be absorbed into the pressure numerically. In this case,
the traction at the exit no longer vanishes. In contrast, the velocity
boundary conditions remain the same. Finally, once the benchmark
results based on an axisymmetric formulation are validated, the
pipe flow can be used to test a three-dimensional code by solving
the same flow. All these above reasons make the pipe flow a useful
benchmark problem.
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Fig. 10(a) shows the comparison of exit (set at x ¼ 32:0) velocity
profile between the numerical result and exact solution. The
numerical result is based on a mesh with 8 quadratic elements in
y direction and 128 quadratic elements in x direction. We have
to emphasize, the results based on our parallel code with 8 proces-
sors under a Linux operating system with MPI C++ compiler pro-
duces digit-by-digit identically the same numbers as those based
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Fig. 10. Comparisons of streamwise velocity profiles for the axisymmetric pipe flow. (
different truncation lengths, x ¼ 128:0 and x ¼ 256:0. (c) Comparison for Re ¼ 1 at x ¼
truncation length of x ¼ 32:0.
on the counterpart serial code under Windows operating system
with Microsoft Visual C++ compiler.

Fig. 10(b) shows comparisons of two exit velocity profiles
against the fully developed parabolic distribution for Re ¼ 800. In
one case the computational domain is truncated at x ¼ 128:0,
which is twice as long as that in the backstep flow. However, the
figure shows that the corresponding result is still very discrepant
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from the exact profile. In the other case, the flow is truncated at
x ¼ 256:0, and with the same mesh resolution we observe an
excellent agreement between the present numerical result and
the exact solution.

Next, the numerical results generated by the parallel DOS finite
element method are compared with those generated by the MAC
FVM code [36], where the MAC staggered grid is employed [18].
Fig. 10(c) shows the results for a pipe flow at Re ¼ 1:0 truncated
at x ¼ 2:0. While the mesh resolution is resolved easily for qua-
dratic finite element method, it takes much more effort for the fi-
nite volume method on MAC staggered grid to achieve the same
convergence. This is because in second-order finite volume meth-
od, all domain and boundary integrals are evaluated at centers.
This is equivalent to one-point quadrature, and it is efficient and
accurate in general. However, its performance on axisymmetric
and diffusive problems is poor.

Fig. 10(d) shows the comparison of several results for a pipe
flow at Re ¼ 100 and at x ¼ 4:5. In this case, the DOS FEM, the
MAC FVM, and the commercial software Fluent (a finite volume
method on non-staggered grid) agree with each other very well.
However, the numerical result based on the boundary layer equa-
tions [21] shows an obvious inaccuracy. We have to point out, all
these four methods yield excellent agreement with the exit parab-
ola profile. That indicates that a mere examination at the exit is not
sufficient for computer code testing.

6.4. Scale-up study

The 2D cavity flow is used to measure the efficiency of the par-
allel algorithm. Table 1 shows the comparison of the cpu time
among cases with different number of processors. The experiment
in the table is based on cavity flow at Re = 1000 on a 256� 256
mesh with a time marching process terminated at the convergence
(defined as relative change of solution less than 10�7). This mesh is
fine enough and the time is long enough to exclude the communi-
cation overhead. The experiment shows that an increase from 2
processors to 8 processors speeds up the computations by 3.68
times. An ideal parallel algorithm speeds up nearly linearly for
large systems, which implies in the same situation it is expected
to be 4 times faster. Hence the current algorithm achieves 92%
efficiency.

6.5. DOS versus mixed formulation

To further investigate the performance of the DOS technique, a
mixed formulation is also implemented for comparison. The con-
struction of the equation system in the mixed formulation is ex-
actly the same as that in the DOS approach. Consequently, both
approaches lead to a linear algebraic equation system in the formeAx ¼ ~b; ð13Þ

where the structure of matrix eA is shown in Eqs. (7a) and (7b). The
indefinite nature of matrix eA makes Eq. (13) very difficult to solve.
For example, the Gauss–Seidel method fails to converge for Eq. (13)
and Krylov-based BiCGStab [10] frequently fails for Eq. (13). This
observation alone is sufficient to demonstrate the success of DOS,
which works for all these linear solvers. To make the mixed formu-
lation work, one may use artificial compressibility or pressure sta-
bilization to modify matrix eA, then an efficiency comparison
Table 1
Scale up study of the parallel finite element implementation.

Number of processors 1 2 4 8

CPU time (h) 78.3 51.1 26.7 13.9
versus DOS is possible. Here we take a different approach. Let eAT

be the transpose of the non-singular matrix eA, then Eq. (13) is
equivalent toeAT eAx ¼ eAT ~b: ð14Þ

The detailed structure of matrix eAT eA is

AT Aþ DT D AT G

GT A GT G

" #
;

which is symmetric and no longer indefinite. Now, Eq. (14) can be
solved with the well-known Conjugate Gradient method. The cavity
flow at Re ¼ 100 on a 16� 16 mesh is solved with a time marching
procedure ðDt ¼ 0:002Þ. For mixed formulation the consumed com-
putational time is 15,986 s while for DOS it is only 900 s. This shows
that the DOS procedure is approximately 17 times as efficient as the
mixed approach.
7. Conclusions

In this paper, the weak form of integral equations for incom-
pressible flows under the generic coordinates is rigorously derived
and some element-level implementation is discussed. To paralle-
lize the computer code, the system is formed in an element-by-ele-
ment manner, which incorporates boundary conditions at element
stage. To solve the system efficiently a processor level assembling
is carried out, and the data of the system is locally stored with the
condensed random structure. The whole system is solved globally
in terms of the overall structure. However, the actual time consum-
ing operations are executed locally and the resulting data are com-
municated among processors. This is the key idea of the
superposition-based parallelization. Superposition-based parallel-
ization is simple and fairly efficient.

To replace the original large indefinite system by two well nat-
ured subsystems, the DOS (discrete operator splitting) technique is
introduced. On one hand, a system with mutual dependency of the
unknowns (in the continuous sense) on the left-hand-side is cou-
pled, while a system with mutual dependency of the unknowns
on the right-hand-side is decoupled. On the other hand, the itera-
tive process of system solving is a process of moving a portion of
quantities to the right-hand-side. Hence, the decoupling process
and the iterative process have the same goal and can be combined
together. The key move to tackle both issues is surprisingly simple:
split the matrix into the diagonal part and the off diagonal part. It
has to be emphasize that the transformed equation system must be
equivalent to the original system.

The DOS and the parallel scheme are implemented with a finite
element method. The verification, effectiveness, and accuracy of
the method are demonstrated by three numerical examples, a
backstep flow, a cavity flow, and a pipe flow. Applications to tran-
sient and three-dimensional problems will be shown in a future
paper. In a continuous sense, an incompressible flow is a special
case of a compressible flow. However, in the discrete sense the
compressible flow can be regarded as a special case of the incom-
pressible flow, because after splitting, the resulting definite system
is in the same format as in a compressible flow. While solving com-
pressible and incompressible flows in a unified approach is desir-
able, currently no successful method, to the authors’ knowledge,
are seen in published literature. The DOS might spark some ideas
toward this direction.
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